skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Thomassé, Stéphan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Gørtz, Inge Li; Farach-Colton, Martin; Puglisi, Simon J; Herman, Grzegorz (Ed.)
    We re-visit the complexity of polynomial time pre-processing (kernelization) for the d-Hitting Set problem. This is one of the most classic problems in Parameterized Complexity by itself, and, furthermore, it encompasses several other of the most well-studied problems in this field, such as Vertex Cover, Feedback Vertex Set in Tournaments (FVST) and Cluster Vertex Deletion (CVD). In fact, d-Hitting Set encompasses any deletion problem to a hereditary property that can be characterized by a finite set of forbidden induced subgraphs. With respect to bit size, the kernelization complexity of d-Hitting Set is essentially settled: there exists a kernel with 𝒪(k^d) bits (𝒪(k^d) sets and 𝒪(k^{d-1}) elements) and this it tight by the result of Dell and van Melkebeek [STOC 2010, JACM 2014]. Still, the question of whether there exists a kernel for d-Hitting Set with fewer elements has remained one of the most major open problems in Kernelization. In this paper, we first show that if we allow the kernelization to be lossy with a qualitatively better loss than the best possible approximation ratio of polynomial time approximation algorithms, then one can obtain kernels where the number of elements is linear for every fixed d. Further, based on this, we present our main result: we show that there exist approximate Turing kernelizations for d-Hitting Set that even beat the established bit-size lower bounds for exact kernelizations - in fact, we use a constant number of oracle calls, each with "near linear" (𝒪(k^{1+ε})) bit size, that is, almost the best one could hope for. Lastly, for two special cases of implicit 3-Hitting set, namely, FVST and CVD, we obtain the "best of both worlds" type of results - (1+ε)-approximate kernelizations with a linear number of vertices. In terms of size, this substantially improves the exact kernels of Fomin et al. [SODA 2018, TALG 2019], with simpler arguments. 
    more » « less
  2. We establish a list of characterizations of bounded twin-width for hereditary classes of totally ordered graphs: as classes of at most exponential growth studied in enumerative combinatorics, as monadically NIP classes studied in model theory, as classes that do not transduce the class of all graphs studied in finite model theory, and as classes for which model checking first-order logic is fixed-parameter tractable studied in algorithmic graph theory. This has several consequences. First, it allows us to show that every hereditary class of ordered graphs either has at most exponential growth, or has at least factorial growth. This settles a question first asked by Balogh, Bollobás, and Morris [Eur. J. Comb. ’06] on the growth of hereditary classes of ordered graphs, generalizing the Stanley-Wilf conjecture/Marcus-Tardos theorem. Second, it gives a fixed-parameter approximation algorithm for twin-width on ordered graphs. Third, it yields a full classification of fixed-parameter tractable first-order model checking on hereditary classes of ordered binary structures. Fourth, it provides a model-theoretic characterization of classes with bounded twin-width. Finally, it settles our small conjecture [SODA ’21] in the case of ordered graphs. 
    more » « less
  3. null (Ed.)